N94-2132%8
Software Metrics - The Key to Quality Software
on the NCC Project

Patricia J. Burns
Computer Sciences Corporation
10110 Aerospace Road Seabrook, Maryland
301.794.1640 (0) 301.552.3272 (fax)

SUMMARY

Network Control Center (NCC) Project metrics are captured during the implementation and
testing phases of the NCCDS software development lifecycle. The metrics data collection and
reporting function has interfaces with all elements of the NCC project. Close collaboration
with all project elements has resulted in the development of a defined and repeatable set of
metrics processes. The resulting data are used to plan and monitor release activities on a
weekly basis. The use of graphical outputs facilitates the interpretation of progress and status.

The successful application of metrics throughout the NCC project has been instrumental in the
delivery of quality software. The use of metrics on the NCC Project supports the needs of the
technical and managerial staff. This paper describes the project, the functions supported by
metrics, the data that are collected and reported, how the data are used, and the improvements
in the quality of deliverable software since the metrics processes and products have been in
use.

NCC PROJECT OVERVIEW

The NCC is an element of the National Aeronautics and Space Administration (NASA)
Spaceflight Tracking and Data Network (STDN). The STDN isa worldwide complex designed
to provide tracking and data acquisition support to manned and unmanned spacecraft in low-
earth orbit. It is composed of the Space Network (SN) and the Ground Network (GN). The
STDN has evolved into a network that currently uses the Tracking and Data Relay Satellite
System (TDRSS) as the primary source of support for orbiting spacecraft. The NCC Project
Office, Goddard Spaceflight Center (GSFC) Code 530, is responsible for the support and
maintenance of the current NCC Data System (NCCDS). The NCCDS performs network
scheduling, acquisition and tracking support, data quality assurance, performance monitoring,
and overall coordination of the STDN.

The NCCDS is maintained by the NCC Project within the Computer Sciences
Corporation (CSC) System Sciences Division (SSD) Networks Technology Group (NTG).

The maintenance and enhancement of the NCCDS is performed as part of the System

PRECEDING PAGE BLANK NOT FILMED
27 i

Engineering and Analysis Support (SEAS) contract. These responsibilities have been
distributed among several tasks: Software Development, Software Maintenance, Integration
Test, System Test, System Engineering, Metrics, Configuration Management, and Product

Assurance.

NCC SOFTWARE METRICS DEFINED

On the NCC Project, the metrics program consists of defined, documented processes
and measurement tools that provide a quantitative and qualitative representation of the status
of a software build or release. Data items including measures of quantity, scheduled and actual
progress, number of iterations, and defect information are collected, stored, and reported
weekly to provide a snapshot of progress and work yet to be accomplished. All of the tools
described in this paper are implemented using a spreadsheet on a 386 or 486 compatible
personal computer. The effort expended on project metrics task activities has varied. At peak
staffing of the NCC project, 3 full-time analysts were assigned to the metrics activity.
METRICS IN NCCDS SOFTWARE LIFECYCLE

The NCC metrics task originated coincident with the software development activity at
the outset of the NCCDS upgrade to support the Second TDRSS Ground Terminal (STGT).
It remains a responsibility of the Software Development Department. While the bulk of the
data collected and reported by metrics is related to software development, the integration test,
system test, and software maintenance tasks are also primary metrics customers. Other project
tasks utilize metrics data as an ancillary function.

The phases of the NCCDS software development lifecycle are illustrated in Figure 1.
The major phases of the lifecycle are requirements identification, design and implementation,
and testing. The testing phase is subdivided into integration, system and acceptance testing
activities. Each of these phases of testing is performed by a different test group. Milestones
that hallmark the software development lifecycle are: system requirements review (SRR),
preliminary design review (PDR), critical design review (CDR), integration test readiness
review (ITRR), system test readiness review (STRR), acceptance test readiness review (ATRR),
and the operations readiness review (ORR). The metrics group provides active support during

the design and implementation phase, the integration test phase, and the system test phase.

28

SRR ITRR STRA ATRR ORR

SYSTEM
OPERATION
REQUIRE- INTEGRATION | SYSTEM | ACCEPTANCE
Al
MENTS DESIGN AND IMPLEMENTATION TESTING TESTING TESTNG |, AIN'?;'NDANCE
DEFINITION
PRELIMINARY | DETAILED | IMPLEMENTA.
DESIGN DESIGN TION
PDR COR g

Figure 1. NCCDS Software Development Lifecycle

The lifecycle for NCCDS software maintenance, illustrated in Figure 2, differs slightly
from the above. The major phases can be defined as contents definition, problem resolution
and implementation, and testing. The initial phase in the maintenance lifecycle is defined as
contents definition as opposed to requirements identification as contents are generally not major
system enhancements. They are predominantly fixes to anomalies reported during operational
use that have been scheduled for a particular maintenance release. Milestones that hallmark
the maintenance lifecycle are an official contents letter, followed by the test readiness reviews
listed above. Formal reviews such as SRR, PDR, and CDR are not included in the software

maintenance lifecycle.

CONTENTS ITRR STRR ATRR ORR
LETTER
Y ‘ * ‘ ‘
NS
CONTENTS PROBLEM RESOLUTION AND INTEGRATION SYSTEM ACCEPTANCE 0’5‘::30
DEFINITION IMPLEMENTATION TESTING TESTING TESTING MAINTENANCE

OPERATIONAL
TROUBLE
REPORT
DATABASE

10014060-002

Figure 2. NCCDS Software Maintenance Lifecycle

29

METRICS DATA COLLECTION AND REPORTING

When using metrics to support software implementation and testing, the objective is to
establish a baseline plan for the work to be done, and then perform work according to the plan.
Generally, this approach is the same for development, maintenance and testing with slight
variations according to the nature of the task being supported. Data flow between

development and maintenance customers and the metrics group is illustrated in Figure 3.

DEVELOPMENT MAINTENANCE
Attected Content
CsCis, \
tems,
Units DSt
Units mainienance
development schedule data
schedule
MAINTENANCE/ 4.1a
DEVELOPMENT/PAD METRICS
Certifica. impigmentaton

vons e CEN
caw

Schedule

NTEGRATION/
SYSTEM TEST

Thiegraton
and iog nos

System data tems
Problem METRICS

Reparts <all-

Scheoule
Update

Multipie
Baselne
Compare

MAINTENANCE/ log nos
DEVELOPMENT am nems

DCA
Tracwung
Sheets b

1og nos
data nems METRICS Integrauon
MAINTENANCE (oy
v PMENT
DEVELOPME! Data Report

Summarnes
Change ‘ Stats
A 0g Nos
eport dan items 7

Forms / -
{CRF) DCA 8
Data g
Summary hai
- 8

Figure 3. Data Flow - Development, Maintenance and Metrics

30

Development and Maintenance Support: Implementation Phase

The primary products produced by Metrics during a development or maintenance
software implementation are schedules, plots, and points summaries. To begin the process of
metrics support of a build or release, both the development and the maintenance organizations
must submit lists of the items (units, displays, etc) that are planned for change in the build or
release along with an estimate of the size of each item in delivered source instructions (DSI).
Development items are identified according to the computer software configuration item and
software component (CSCI and SC) along with the item name, and the anticipated impact of
the change (a percentage of the DSI.) Maintenance items are identified according to the
problem report number, or some other form identifier, along with the item name. This
information is used to build an Implementation Schedule spreadsheet. A sample portion of a

development implementation schedule is shown in Figure 5 below.

L]] A [] 13 1
c — DEBON ST AN DESIGN - CODE - [2=] ey st
csa sce WODULE MAME OWADATE TYPE AP OB Pon Acual Pron At WESPP REEPI AECEAT Pen Acwsi MESP P ACEPI RECERT Man Acre LU s I - L]
00 vem csTwea wnzas U A 8 0MIAI G DWW GWOAS DE WA OVDIAT 087081 OKIRY BE WEr OTRIR AmeAl ERA bE ww
307 800 CETROSY e L4 [- wncwy wmmy Ot L}
1307 w0 cs1sc -1 v 4 “ N/ I TUWA) OUIN} OF v ownony wIms OE e wnons etnomy DI [4
4307 seoc coTERw wATeI U A W2 GUIA) RAWNT OVIOAT Al B WP ooy Moemy DE W srromy eemy DE ww
"R o CSTRPO WAl U C M BNom OMIA 0VI0A) sue) DE W oAy Bmaim) DE WP oroe) eroms DU M
1300 o caTiony SUiZNI U A W GMIGAT OMGA) VIR oW OE MP anoRI U DE MSF oM oAl Of W
$307 00 oy ey P < 1” wnom omes DL ug
307 e csvap MNBEI U A W1 WONT &A0A1 W0R3 0M/MAY DE M mnom oAy DE W e'mAl BIMAY TE U
0y em croRsc wunzes P A 0® 30m DA DE M
3302 sex YDA MBI U A 1B IO OMAY DIIA] KA D M osomy OIsey DE MR oroRs wmmy DE Ja
$307 s CTDmpM wipws F C 0w canom 78y BE WP
307 W CTDAST iz L4 A 2 o308 8d72%y DE L34
307 am cToATAS enW U W 63 0870 A MR DMUMD WS o8 mnoml oNWas D W oimawr Taem SR te up wom
#3070 CYIrcw oinpms P € 0w oAl ea7ay DL MW
wer e cvesct ongm ? € W noe3 o DE WP
3304 3000 TUDEC Laal 2] L4 (4 . DA0AT DANERT AM om
OB TOTAL t7844 w 19 Cl s " 8 w -

Figure 5. Development Implementation Schedule

31

CUMULATIVE ITEMS

Included are estimated dates for the design, code and test certification of each item on the
schedule. The certification process is defined by the SEAS Software System Development
Methodology (SSDM) to record completion of the design, code and test of items in a build or
release. Weekly, as the actual certifications are completed, the completion dates are added to
the implementation schedule. Design, Code and Test Plots are generated that contrast the
planned certification progress against the actual certification progress. Each of these graphs
also shows growth in the total number of items to be certified. Sample design, code and test

plots are shown in Figure 6.

292 41--CCS RELEASE 3 BUILD 1
DESIGN - 9/8/93

4/18_a70 314 7B et @8 7@ 77y WS 8120 83 en?

1o * & @ 4
T 7 Noy
120 11 -1 1—TORAL 8126 -1 1 1T (- +4~ 11"
T]
@
2 woi{-F13-1 -1 1%
g ey ®Y
E % -t N
e IRNREY BN .
g /
40 1 + 1
© ¥
20 +—4 o] ——— -
[
ole-mwd |] 4| L
13 7T ¢ 1t 13 15 47 19 2% 23
WEEKS

L-Q' g;e:uied A - Actual T Basehr;e l

292 41--CCS RELEASE 3 BUILD 1

292 41-CCS RELEASE 3 BUILD 1 AELEAS
CODE - 9/8/93 .
- - - o i
418 43D Sp4_Br2e /11 825 7B 7733 8/6 80 9N 81T a6 430 sS4 3z et e2s e TR e 870 95 007
=0 4 ¢ 1
R 120 roral S{ZE —-4—-1 41 | NOW-
200 TATAL SIZE . ATt . No - o ¥
) e 4 AT BERERE 2 100 ?’ﬁ -
_ .v,,{'g’,,,u,,- B R E .
160 ‘Pr g o
') $-® ’; 0 y
100 -1 1 - - - g it
4 ' 8 40] &
50 ')”'H’ A aT - 20 .7.4(
/ FAS L
1 _ i . 1 o'd & 4 . & d -
o .; ! K] 5 1 " 13 15 17 19 21 23 1 3 s 7 1 " 13 15 17 19 2% 23
WEEKS WEEKS
a Schedule.d re Actual N Héa:l;v B Q Scheduled 4 Actunl * Baseline

Figure 6. Design,Code and Test Plots

32

Lastly, a tally of Points, Figure 7, is calculated based on the total items to complete and the
total completed. Points indicate the amount of credit that can be taken towards the completion
of the activity. A different number of points are assigned to each activity - design, code, and
test certification - by management. As the size of a build or release grows so does the number
of total points. This is reflected in the difference between baseline size and current size, and
the points added. Points are calculated weekly and included in the implementation schedule
data summary. Each of these products, the schedule, plots, and points summary supports the
timely delivery of quality software by providing detailed and high-level feedback on progress

and remaining work.

SUMMARY DATA asol QT123/93
3329241
Orniginal Stan Date: 04/16/83
Onginal Eng Date: 09/24/93
Projecied End Date: 05/24/93
Numbet of weeks slapsed 150
Weeks 10 Onginat End 90
Weeks to Projecied End: [-3]
Estmated Size] Completed) Yet To Complete | Planned Percenl
Percent | 1 | Yo Be Ahead of
Baseling Cutrenl Growt h | Number Percent| Number Porcent | Complete Plan
DESIGN 113 118 4 % 100 85 % | 18 15 %] 118 B11
TEST PLAN 113 18 4 % 839 75 W | 29 25 %| ns -25
CODE 190 202 6 % 184 91 % | 18 s %) 194 -5
TEST 13 118 4 % 48 41 %] 70 59 % | 92 48
Moduie Test 4] o] NA % 0 NA % | (4] NA % | 4] NA
spare 3 0 0 NA % 0 NA %] [} NA % | 0 NA
spare 2 o 0 NA % [} NA %} [} NA %}] NA
spare 1 [} o NA % o NA % | o NA %]] NA
Tolal Foints 1438 15176 5 % 1232 By % | 284 19 %] 1432 Bl
FISCAL MONTH POINT SUMMAR CUMULATIVE POINTS
Activity Points Monih Pianned Compleled Planned Complated % Added
DESIGN 4 APR 176 304 176 304 73%]
TEST PLAN [+] MAY 34 4B4 490 788 6% 30
CODE 4 JUN 536 336 1126 H24 0% 24
TESY 2 JUL 306 108 1432 1232 4% 24
Module Test 0 AUG B4 Q 1516 o o% [}
spare 3 Q SEP [+] [} 0 o Oo% (4]
spare 2 [«]
spare § 4] TOTAL 1516 1232 78
Total 10

Figure 7. Development Points Summary

33

Development and Maintenance Support: Testing Phase

At the completion of an implementation phase, the build or release baseline is delivered
to Configuration Management (CM) through the Product Assurance Office (PAO) to be placed
under configuration control. Once a build or release has been placed under CM control,
changes made to the baseline are tracked through the problem reporting system defined in the
NCC Standards and Procedures.

The implementation schedule used to account for all items planned for the build or
release is now revised to become the Schedule Updare. The schedule update is used to track
the impact of problem report changes on specific items in a build or release as it progresses
through testing. The impacting problem report, recertification information, new DSI counts,
and variance in the weighted amount of change are recorded on the schedule update. By
referencing the schedule update, management and technical staff can identify which software
components are being impacted by problem reports and determine if additional build or release
items require aftention. An enhancement for cross-checking between different builds and
releases is the recently developed data summary, the Multiple Baseline Compare. The compare
shows which software items are being updated simultaneously for different builds or releases.
This information is critical in the NCCDS development and maintenance environment to insure
the integrity of software products. Implementation activities for different builds and releases
sometimes proceed in parallel, requiring that each baseline be updated separately, but yet
remain consistent with each other. For example, although a development build may be initiated
before a maintenance release, the full development release may not be delivered to the
customer until after delivery of the maintenance release. All changes made in the maintenance
release must also be present in the superseding development release. The compare report
makes the development and maintenance programming staff aware of the need to merge
changes from one implementation effort into others as applicable, thus preventing the loss of
upgrades and fixes from one baseline to another.

Integration and System Test Metrics Support

There are two levels of testing performed by NCC project staff against each software

build or release - integration testing and system testing. The data flow between the test groups

and the metrics group is illustrated in Figure 8.

34

INTEGRATION TEST
test

schedule
Test / data
METRICS

Planning
e S Integration
Test
Test Schedules Schedule,
Plots, and
Point
Summary
test
schedule
SYSTEM TEST data
/ log data "
T nos. items
ot System
Planning higd
pa Schedule,
. ; Plots, and 2
Integration Integration Point s
and System and System Summary §
Problem Test g
Reports Certifications g

Figure 8. Data Flow - Test and Metrics

As previously stated, at the start of testing the baseline is put under CM control. During
integration testing all problems found in the build or release are documented on Integration
Software Problem Reports (ISPRs). During system testing, all problems are documented on
Software Problem Reports (SPRs). The differentiation distinguishes the test phase in which
a problem was found in a build or release.

Similar to the development and maintenance implementation activities, three basic
products are provided in support of integration testing and system testing: a schedule of test
activities, plots of the progress, and points summary data. Before the start of integration and
system test, the integration or system test group provides information on the test cases that will
be run against the build or release. Both test groups provide an itemized list with titles and
numbers of each test to be run, along with the corresponding CSCI or release requirement.
Also provided is additional information including scheduled dates for the start and/or
completion of each test, the staff members responsible for each test, and the number of points
to be allocated to each test. The use of these tools supports testers and test managers by

facilitating the planning of resource allocation for specific tests, identifying problem reports

35

that are impacting test case progress, and providing weekly feedback on progress. The
information collected also helps identify where test procedures are lacking the depth needed
to throughly test the software.
BENEFITS OF THE NCC METRICS DATA COLLECTION ACTIVITY

NCC metrics reporting makes project status accessible, traceable, and concise. The
metrics processes and tools are simple, yet flexible enough to accommodate the specific needs
of different managers; the outputs can easily be tailored to each group’s needs. Additionally,
the use of a project-wide metrics data collection and reporting activity provides an excellent
source of information for defect causal analysis. Based on three years of practice, the benefits
of the NCC metrics activity can be summarized into three major categories: Planning,
Monitoring and Control, and Defect Causal Analysis.
Planning

From the management perspective, the initial and updated schedules provided by the
metrics group identify work to be accomplished, in detail, before the start of the effort, for both
implementation and testing. Managers are able to establish guidelines for the work to be
accomplished during the scheduled interval of time. When used for planning, the
implementation and test schedules indicate the concentration of items to be accomplished by
date and by functional area. The distribution of staff resources can be mapped and then
adjusted as necessary. The use of detailed schedules facilitates the formulation of a workable
and realistic plan. From the technical perspective, once the schedules are established they are
made available for reference. The plan of action is clear not only to management, but also to
those directly responsible for accomplishing the work. Individuals can formulate their own
plan for accomplishing work for which they are responsible. Making the schedules available
to technical staff also facilitates communication. Each person knows who is responsible for
specific items, therefore questions and information can be directed appropriately.
Monitoring and Control

Each manager involved in the completion of an NCC software build or release is
required to plan his or her work. Therefore, it is also incumbent upon the managers to
compare their planned activities to the progress being made. The points summary and the plots

provide at-a-glance feedback on planned versus actual progress. This assists managers in

36

preparing for monthly status reviews. Metrics reports provide access to historical data that is
used as a basis for planning future software implementations.

The regular distribution of metrics reports allows managers and technical staff to
identify potential problems as they are developing. It is possible to apply a mitigation action
before a problem grows in magnitude. The continuous data capture and reporting cycles
facilitate the monitoring and control effort and direct managers to specific areas of concern.
Metrics processes track the progress of the implementation down to the unit level. Items that
are significantly behind schedule are flagged for further investigation. Similarly, during
problem resolution, the progress of test cases and of problem resolution is closely tracked
through the data collection and reporting process. The progress of all activities - development,
testing and problem resolution - are tied to points summaries and plots. Therefore there are
several levels at which information is reported. Plots illustrate progress; and points summaries
numerically represent the progress and provide the basis for taking credit for accomplishments

on a monthly basis. The schedules contain the detailed information needed by line managers

and task leaders.

Defect Causal Analysis

An important initiative in the SEAS program is the defect causal analysis of software
implementation and testing efforts. The NCC Project developed a DCA procedure based on
data collected by the metrics task, and additional analysis provided by the technical staff. The
metrics group provides key data collection and reporting DCA on the NCC project.

In addition to the three basic products already described, the initiation and resolution
of ISPRs and SPRs is monitored using the Derailed Defect Causal Analysis (DCA) Listing.
This spreadsheet and associated plots contain information such as when a problem report was
written, the affected NCCDS segment, the manager or task leader assigned to analyze and
resolve the problem, and data items that characterize the problem resolution. To aid in DCA,
plots are generated that illustrate the characteristics of the problem report resolutions applied
to a build or release. When performing DCA of each build or release, it is often helpful to
make comparisons of the results against previous build or release statistics. Metrics reports
draw attention to areas that are consistently at risk in each subsequent build or release. Results

are fed into the subsequent planning process in order to formulate risk mitigation approaches.

37

An analysis of Release 92.1 statistics by the metrics and development groups for the
Service Planning Segment (SPS) of the NCCDS showed that for software items against which
formal reviews were conducted by development during the design and code of the release, no
software changes were necessary in integration or system testing. As a result of these findings,
the SPS group has enhanced its internal review procedures.

PROCESS IMPROVEMENT YIELDS QUALITY IMPROVEMENT

The effect of the project metrics activity on the quality of the NCCDS software is best
illustrated in the following chart , Figure 9, that compares size and incidence of errors for four
recent NCCDS Releases. Release 90.1 and Release 91.1, software maintenance releases, were
implemented and tested prior to the start of the NCC Metrics activity. The metrics activity was
initiated with the first build of Release 92.1, a two build software development release. The
first maintenance activity to be included in the NCCDS system of metrics was Release 93.1.

On this chart, SPRs are software problem reports written by the NCCDS Project before
delivery to the customer, STRs are system trouble reports written by the GFSC acceptance test
team. The statistics show that since the advent of the NCC metrics system

development Release 92.1, with the largest number of delivered source instructions, has

the lowest overall error rate, and

maintenance Release 93.1, at almost twice the size of Release 91.1, was delivered with
half as many total SPRs and STRs.

Release ldentifier 90.1 (Maint) 91.1 (Maint) 92.1 (Dev) 93.1 {Maint)
| Before Metrics | Before Metrics After Metrics After Metrics

Release Size {DSI) 7925 18308 112115 36041

Total SPRs Reported 31 135 221 155

Total STRs Reported 15 34 92 25

SPR Errors/KDSI 3.91 7.37 1.97 4.30

STR Errors/KDSI 1.89 1.85 0.82 0.69

Figure 9. Release Size and Error Rate Comparison

38

Since the system of metrics data collection and reporting has been in use, the rate of errors per
thousand DSI has decreased. Collecting defect-related statistics on the schedule update report,
the testing schdules and plots, and on the detailed DCA listing has helped to focus attention
on critical areas of the software baseline, this has aided in the resolution of problems and the
unmasking of additional problems before delivery to the customer. Also, by using the
schedules, plots and points summaries to navigate development and test efforts, the NCC
Project has met the majority of its internal milestones, and made all of its scheduled deliveries
to the customer on time.

SUMMARY

The goal of the NCC Project metrics activity has been to support the project processes
and procedures in order that each build or release be delivered on schedule and reflective of
high quality. Consistent with this goal, the objectives to be met are to establish plans, monitor
the progress according to the plan, and utilize the feedback to effectively manage progress,
growth and change during the implementation and test phases. In addition to the above
benefits of the metrics data collection and reporting processes, data have been used in the
development of Baseline History Réports, and as evidence in internal, division level, and GSFC
process audits. Models of the NCC Metrics plan have been used in contract proposals to
outline a method for supporting the software development lifecycle.

Comparisons of NCCDS release histories, and the increased level of customer
satisfaction have proven that the use of simple tools to support management and technical staff,
as described in this paper, have had a measurable effect on the ability of the NCC project to
deliver high quality, error-free builds and releases.

REFERENCES

1. Computer Sciences Corporation, SEAS Software Development Methodology (SSDM)

2. , Network Control Center Data System (NCCDS) Metrics Handbook, Draft,
September 1993

3. ____, NCC Srandards and Procedures, Revision 7, March 1993

4. ____, Release 90.1 Baseline History Report, February 1991

5. __, Release 91.1 Baseline History Report, January, 1992

6. _____, Release 92.1 Baseline History Report, February 1993

39

